
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/319650821

Effects	of	mild	running	on	substantia	nigra
during	early	neurodegeneration

Article		in		Journal	of	Sports	Sciences	·	September	2017

DOI:	10.1080/02640414.2017.1378494

CITATIONS

0

READS

184

12	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Ascorbate	reduction	of	sulfenic	acids	in	Peroxredoxin	and	other	proteins	–	alternative	redox	pathway

in	biology	View	project

Genomics	and	Bioinformatics	View	project

Michael	Fernandes	de	Almeida

University	of	North	Carolina	at	Pembroke

7	PUBLICATIONS			11	CITATIONS			

SEE	PROFILE

Marilene	Demasi

Instituto	Butantan

52	PUBLICATIONS			1,018	CITATIONS			

SEE	PROFILE

Tiago	Fernandes

University	of	São	Paulo

60	PUBLICATIONS			800	CITATIONS			

SEE	PROFILE

Edilamar	M.	de	Oliveira

University	of	São	Paulo

150	PUBLICATIONS			2,132	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Merari	F.R.	Ferrari	on	09	October	2017.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/319650821_Effects_of_mild_running_on_substantia_nigra_during_early_neurodegeneration?enrichId=rgreq-f1dd9e9f0d5fdf7027d096ee27fe1d36-XXX&enrichSource=Y292ZXJQYWdlOzMxOTY1MDgyMTtBUzo1NDc1ODg5NDE5MTQxMTNAMTUwNzU2Njc4NTMzNA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/319650821_Effects_of_mild_running_on_substantia_nigra_during_early_neurodegeneration?enrichId=rgreq-f1dd9e9f0d5fdf7027d096ee27fe1d36-XXX&enrichSource=Y292ZXJQYWdlOzMxOTY1MDgyMTtBUzo1NDc1ODg5NDE5MTQxMTNAMTUwNzU2Njc4NTMzNA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Ascorbate-reduction-of-sulfenic-acids-in-Peroxredoxin-and-other-proteins-alternative-redox-pathway-in-biology?enrichId=rgreq-f1dd9e9f0d5fdf7027d096ee27fe1d36-XXX&enrichSource=Y292ZXJQYWdlOzMxOTY1MDgyMTtBUzo1NDc1ODg5NDE5MTQxMTNAMTUwNzU2Njc4NTMzNA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Genomics-and-Bioinformatics?enrichId=rgreq-f1dd9e9f0d5fdf7027d096ee27fe1d36-XXX&enrichSource=Y292ZXJQYWdlOzMxOTY1MDgyMTtBUzo1NDc1ODg5NDE5MTQxMTNAMTUwNzU2Njc4NTMzNA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-f1dd9e9f0d5fdf7027d096ee27fe1d36-XXX&enrichSource=Y292ZXJQYWdlOzMxOTY1MDgyMTtBUzo1NDc1ODg5NDE5MTQxMTNAMTUwNzU2Njc4NTMzNA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michael_Fernandes_De_Almeida?enrichId=rgreq-f1dd9e9f0d5fdf7027d096ee27fe1d36-XXX&enrichSource=Y292ZXJQYWdlOzMxOTY1MDgyMTtBUzo1NDc1ODg5NDE5MTQxMTNAMTUwNzU2Njc4NTMzNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michael_Fernandes_De_Almeida?enrichId=rgreq-f1dd9e9f0d5fdf7027d096ee27fe1d36-XXX&enrichSource=Y292ZXJQYWdlOzMxOTY1MDgyMTtBUzo1NDc1ODg5NDE5MTQxMTNAMTUwNzU2Njc4NTMzNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_North_Carolina_at_Pembroke?enrichId=rgreq-f1dd9e9f0d5fdf7027d096ee27fe1d36-XXX&enrichSource=Y292ZXJQYWdlOzMxOTY1MDgyMTtBUzo1NDc1ODg5NDE5MTQxMTNAMTUwNzU2Njc4NTMzNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michael_Fernandes_De_Almeida?enrichId=rgreq-f1dd9e9f0d5fdf7027d096ee27fe1d36-XXX&enrichSource=Y292ZXJQYWdlOzMxOTY1MDgyMTtBUzo1NDc1ODg5NDE5MTQxMTNAMTUwNzU2Njc4NTMzNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marilene_Demasi?enrichId=rgreq-f1dd9e9f0d5fdf7027d096ee27fe1d36-XXX&enrichSource=Y292ZXJQYWdlOzMxOTY1MDgyMTtBUzo1NDc1ODg5NDE5MTQxMTNAMTUwNzU2Njc4NTMzNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marilene_Demasi?enrichId=rgreq-f1dd9e9f0d5fdf7027d096ee27fe1d36-XXX&enrichSource=Y292ZXJQYWdlOzMxOTY1MDgyMTtBUzo1NDc1ODg5NDE5MTQxMTNAMTUwNzU2Njc4NTMzNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Instituto_Butantan?enrichId=rgreq-f1dd9e9f0d5fdf7027d096ee27fe1d36-XXX&enrichSource=Y292ZXJQYWdlOzMxOTY1MDgyMTtBUzo1NDc1ODg5NDE5MTQxMTNAMTUwNzU2Njc4NTMzNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marilene_Demasi?enrichId=rgreq-f1dd9e9f0d5fdf7027d096ee27fe1d36-XXX&enrichSource=Y292ZXJQYWdlOzMxOTY1MDgyMTtBUzo1NDc1ODg5NDE5MTQxMTNAMTUwNzU2Njc4NTMzNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tiago_Fernandes12?enrichId=rgreq-f1dd9e9f0d5fdf7027d096ee27fe1d36-XXX&enrichSource=Y292ZXJQYWdlOzMxOTY1MDgyMTtBUzo1NDc1ODg5NDE5MTQxMTNAMTUwNzU2Njc4NTMzNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tiago_Fernandes12?enrichId=rgreq-f1dd9e9f0d5fdf7027d096ee27fe1d36-XXX&enrichSource=Y292ZXJQYWdlOzMxOTY1MDgyMTtBUzo1NDc1ODg5NDE5MTQxMTNAMTUwNzU2Njc4NTMzNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Sao_Paulo?enrichId=rgreq-f1dd9e9f0d5fdf7027d096ee27fe1d36-XXX&enrichSource=Y292ZXJQYWdlOzMxOTY1MDgyMTtBUzo1NDc1ODg5NDE5MTQxMTNAMTUwNzU2Njc4NTMzNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tiago_Fernandes12?enrichId=rgreq-f1dd9e9f0d5fdf7027d096ee27fe1d36-XXX&enrichSource=Y292ZXJQYWdlOzMxOTY1MDgyMTtBUzo1NDc1ODg5NDE5MTQxMTNAMTUwNzU2Njc4NTMzNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Edilamar_Oliveira2?enrichId=rgreq-f1dd9e9f0d5fdf7027d096ee27fe1d36-XXX&enrichSource=Y292ZXJQYWdlOzMxOTY1MDgyMTtBUzo1NDc1ODg5NDE5MTQxMTNAMTUwNzU2Njc4NTMzNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Edilamar_Oliveira2?enrichId=rgreq-f1dd9e9f0d5fdf7027d096ee27fe1d36-XXX&enrichSource=Y292ZXJQYWdlOzMxOTY1MDgyMTtBUzo1NDc1ODg5NDE5MTQxMTNAMTUwNzU2Njc4NTMzNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Sao_Paulo?enrichId=rgreq-f1dd9e9f0d5fdf7027d096ee27fe1d36-XXX&enrichSource=Y292ZXJQYWdlOzMxOTY1MDgyMTtBUzo1NDc1ODg5NDE5MTQxMTNAMTUwNzU2Njc4NTMzNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Edilamar_Oliveira2?enrichId=rgreq-f1dd9e9f0d5fdf7027d096ee27fe1d36-XXX&enrichSource=Y292ZXJQYWdlOzMxOTY1MDgyMTtBUzo1NDc1ODg5NDE5MTQxMTNAMTUwNzU2Njc4NTMzNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Merari_FR_Ferrari?enrichId=rgreq-f1dd9e9f0d5fdf7027d096ee27fe1d36-XXX&enrichSource=Y292ZXJQYWdlOzMxOTY1MDgyMTtBUzo1NDc1ODg5NDE5MTQxMTNAMTUwNzU2Njc4NTMzNA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=rjsp20

Download by: [Sistema Integrado de Bibliotecas USP] Date: 13 September 2017, At: 04:35

Journal of Sports Sciences

ISSN: 0264-0414 (Print) 1466-447X (Online) Journal homepage: http://www.tandfonline.com/loi/rjsp20

Effects of mild running on substantia nigra during
early neurodegeneration

Michael F. Almeida, Carolliny M. Silva, Rodrigo S. Chaves, Nathan C. R.
Lima, Renato S. Almeida, Karla P. Melo, Marilene Demasi, Tiago Fernandes,
Edilamar M. Oliveira, Luis E. S. Netto, Sandra M. Cardoso & Merari F. R.
Ferrari

To cite this article: Michael F. Almeida, Carolliny M. Silva, Rodrigo S. Chaves, Nathan C.
R. Lima, Renato S. Almeida, Karla P. Melo, Marilene Demasi, Tiago Fernandes, Edilamar M.
Oliveira, Luis E. S. Netto, Sandra M. Cardoso & Merari F. R. Ferrari (2017): Effects of mild
running on substantia nigra during early neurodegeneration, Journal of Sports Sciences, DOI:
10.1080/02640414.2017.1378494

To link to this article:  http://dx.doi.org/10.1080/02640414.2017.1378494

Published online: 12 Sep 2017.

Submit your article to this journal 

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=rjsp20
http://www.tandfonline.com/loi/rjsp20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/02640414.2017.1378494
http://dx.doi.org/10.1080/02640414.2017.1378494
http://www.tandfonline.com/action/authorSubmission?journalCode=rjsp20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=rjsp20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/02640414.2017.1378494
http://www.tandfonline.com/doi/mlt/10.1080/02640414.2017.1378494
http://crossmark.crossref.org/dialog/?doi=10.1080/02640414.2017.1378494&domain=pdf&date_stamp=2017-09-12
http://crossmark.crossref.org/dialog/?doi=10.1080/02640414.2017.1378494&domain=pdf&date_stamp=2017-09-12


Effects of mild running on substantia nigra during early neurodegeneration
Michael F. Almeidaa, Carolliny M. Silvaa, Rodrigo S. Chavesa, Nathan C. R. Limaa, Renato S. Almeidab, Karla P. Meloa,
MarileneDemasic, Tiago Fernandes d, EdilamarM.Oliveirad, Luis E. S. Nettoa, SandraM. Cardosoe,f andMerari F. R. Ferrari a

aDepartamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil; bInstitute for Biosciences, University
of Taubate, Taubate, Brazil; cLaboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, Brazil; dLaboratory of Biochemistry and Molecular
Biology of the Exercise, Department of Human Movement Biodynamic, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil;
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ABSTRACT
Moderate physical exercise acts at molecular and behavioural levels, such as interfering in neuroplasticity, cell
death, neurogenesis, cognition and motor functions. Therefore, the aim of this study is to analyse the cellular
effects of moderate treadmill running upon substantia nigra during early neurodegeneration. Aged male
Lewis rats (9-month-old) were exposed to rotenone 1mg/kg/day (8 weeks) and 6 weeks of moderate treadmill
running, beginning 4 weeks after rotenone exposure. Substantia nigra was extracted and submitted to
proteasome and antioxidant enzymes activities, hydrogen peroxide levels and Western blot to evaluate
tyrosine hydroxylase (TH), alpha-synuclein, Tom-20, PINK1, TrkB, SLP1, CRMP-2, Rab-27b, LC3II and Beclin-1
level. It was demonstrated that moderate treadmill running, practiced during early neurodegeneration,
prevented the increase of alpha-synuclein and maintained the levels of TH unaltered in substantia nigra of
aged rats. Physical exercise also stimulated autophagy and prevented impairment of mitophagy, but
decreased proteasome activity in rotenone-exposed aged rats. Physical activity also prevented H2O2 increase
during early neurodegeneration, although the involved mechanism remains to be elucidated. TrkB levels and
its anterograde trafficking seem not to be influenced by moderate treadmill running. In conclusion, moderate
physical training could prevent early neurodegeneration in substantia nigra through the improvement of
autophagy and mitophagy.
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KEYWORDS
Mitophagy; proteasome
activity; oxidative stress;
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Introduction

Physical exercise has been postulated as an intervention that may
attenuate progression of system aging. Physical training, at mod-
erate levels, also protects brain against aging effects, restoring
structural and functional impairments. The benefits of physical
exercise has been attributed to changes at the cellular level in
brain, such as enhanced angiogenesis (Al-Jarrah, Jamous, Al
Zailaey, & Bweir, 2010); anti-inflammatory responses (Cadet et al.,
2003; Wu et al., 2011a); mitochondrial function (Lau, Patki, Das-
Panja, Le, & Ahmad, 2011); neurogenesis (Real et al., 2013; Tajiri
et al., 2010); and protection against lost of tyrosine hydroxylase
(TH) positive cells (Tuon et al., 2012). All these effects may translate
to attenuation of age-related diseases, including Parkinson’s dis-
ease (PD) (Speelman et al., 2011).

PD is the second most common age-related neurodegenera-
tive disease, characterized by motor and non-motor symptoms,
which decrease quality of life and increase mortality. PD is char-
acterized by progressive degeneration of dopaminergic neurons
of the substantia nigra pars compacta as well as the presence of
intracellular insoluble inclusions, called Lewy Bodies, consisting
primarily of aggregated α-synuclein protein. Although the cause
of PD is unknown, aging is considered themajor risk factor; never-
theless, genetic and environmental factors contribute to

neurodegeneration (Collier, Kanaan, & Kordower, 2011; Dawson
& Dawson, 2003).

Motor symptoms appear after the loss of 50–70% of dopami-
nergic neurons (TH-positive neurons) in substantia nigra making
diagnosis difficult in early stages PD. In the last decade, studies
have reported alterations at the cellular level, such as changes in
proteostasis (Bourdenx et al., 2016; Chang et al., 2016; Mazzulli,
Zunke, Isacson, Studer, & Krainc, 2016; Xilouri, Brekk, & Stefanis,
2016); mitochondria (Gautier, Corti, & Brice, 2014; Pickrell, Pinto,
Hida, & Moraes, 2011); oxidative stress (Kim, Kim, Rhie, & Yoon,
2015; Singsai, Akaravichien, Kukongviriyapan, & Sattayasai, 2015;
Uttara, Singh, Zamboni, & Mahajan, 2009); disruption on axonal
transport (Goldstein, 2012; Millecamps & Julien, 2013); and neuro-
trophic factors pathways (Berghauzen-Maciejewska et al., 2015;
Mariani et al., 2015; van der Kolk et al., 2015), that are closely
related to early stages of PD.

Animal models are reliable to understand the mechanisms of
neurodegeneration (Jagmag, Tripathi, Shukla, Maiti, & Khurana,
2015). In this way, rotenone, a high affinity specific inhibitor of
mitochondrial NADH dehydrogenase within complex I of the
respiratory chain, have been used as a model of PD (Betarbet
et al., 2000; Cannon et al., 2009), since it is able to promote
α-synuclein aggregation in vitro (Chaves, Melo, Martins, & Ferrari,
2010; Radad, Gille, & Rausch, 2008; Ullrich & Humpel, 2009) and in
vivo (Almeida, Silva, D’Unhao, & Ferrari, 2016; Hoglinger et al.,
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2005). Additionally, rotenone exposure leads to impairment of
proteasome activity, oxidative/nitrosative stress, dysfunction of
cytoskeleton; reduction of axonal transport and autophagic flux
(Almeida, Chaves, et al., 2016; Chaves et al., 2016; Chaves, Melo,
D’Unhao, Farizatto, & Ferrari, 2013; Henchcliffe & Beal, 2008), prior
to formation of protein aggregates.

Considering that the effects of physical exercise in early stages
of protein aggregation remains poorly understood, the objective
of the present study is to evaluate the effects of physical exercise
on oxidative stress, proteostasis, mitophagy and TrkB receptors
levels and trafficking in the substantia nigra of aged rats during
early neurodegeneration promoted by rotenone exposure.

Methods

All procedures were performed in accordance with the
International Guideline for Animal Experimentation care and
use (Demers et al., 2006), as well as respecting the Brazilian
federal law 11,794/08 for animal welfare and approved by the
institutional ethics committee (CEUA IB 451/11) of the Institute
of Biosciences of the University of Sao Paulo.

Animals

Twenty-six aged male Lewis rats (9 months old), supplied by
the central animal facility of the Institute of Biosciences of the
University of Sao Paulo were used in this study. The animals
were housed in groups of 3–4 animals per conventional cage,
maintained at 23°C ± 2, in an inverted 12h light/12h dark cycle
(lights off at 7 am), with free access to food and water.

Rotenone exposure

Rats were anesthetized with ketamine (1.25ml/kg) and xylazine
(0.5ml/kg) and had osmotic minipumps (4ML2, Alzet, USA)
implanted subcutaneously on their back, containing dimethyl
sulfoxide (DMSO, Sigma, USA) and polyethylene glycol (PEG,
Sigma, USA) (DMSO:PEG – 1:1) as Control Group (DMSO) or
Rotenone (Sigma, USA) dissolved in DMSO:PEG in equal volumes
which were delivered at the rate of 1mg/kg/day during 4 weeks.
After 4 weeks same procedure was repeated to ensure the
exposure to rotenone for 8 weeks.

Physical exercise training

After 1 week of minipumps implantation all Lewis rats were famil-
iarized to treadmill running 3 times per week, 10–30 minutes per

day, 0.3km.h−1, during 3 weeks. Rats were then preselected for
their ability to run in a treadmill and allocated to physical exercise
training group (exe, 50–60% of maximal exercise capacity, 5 days/
week, 40 minutes/day, during six weeks) or kept sedentary (sed).
Preselection of rats avoid the possible stress caused by forced
training, as well as decrease the losses during training, since no
electric shockwas employed tomotivate rats to run.Willingness to
run per se do not influence the results, however the stimulation to
keep running when rats are not prone to run is stressful
(Greenwood et al., 2013), and this negatively influence
neurodegeneration.

Rats that did not run or stopped running (total of 6 rats) during
protocol were excluded from the analysis. By the end of the
exercise protocol we had 20 rats (n = 5 for each experimental
group, i.e. DMSO sedentary, DMSO trained, Rotenone sedentary,
Rotenone trained). Sedentary rats were exposed to the switched
off treadmill during the same period as the trained rats did.
Exercise protocol started after 4 weeks of rotenone exposure
and lasted 6 weeks, during the second round of rotenone delivery
and 2 additional weeks. Figure 1 summarizes the training protocol
and experimental groups.

Maximal exercise capacity was determined by the progressive
maximal test starting at 0.3km.h−1, with increments of 0.3km.h−1

every 3 min until exhaustion, which was recognized when rats
were at semireclining posture, did not recover physical strength
after reduction of speed and react slowly to hand stimulation on
their back.

Progressivemaximal test was repeated every 2 weeks in order
to re-adapt the velocity, thus maintaining the intensity of train-
ing (Ceroni, Chaar, Bombein, & Michelini, 2009; Ichige et al., 2016;
Rodrigues et al., 2007)

With the end of physical exercise animals were euthanized and
their soleus and gastrocnemius were removed to access skeletal
muscle adaptation to exercise, by citrate synthase activity. Also,
substantia nigra was removed and either immediately processed
for enzymes activity and H2O2 concentration, or stored at −70°C in
extraction buffer (400 µl of PBS, pH 7.4, containing 1% NP40, 0.5%
sodium deoxycholate, 1%SDS, 1mM EDTA, 1mM EGTA and 1%
protease inhibitor cocktail, all reagents from Sigma) for Western
Blot assay.

Citrate synthase activity

Citrate synthase activity was measured in gastrocnemius and
soleus homogenates based on the previously described method
(Srere, 1969). Muscles were homogenized in a buffer containing
0.1 M Tris, pH 8.1, 0.15 M NaCl, 0.1% Triton X-100, 1 mM EDTA and

Figure 1. Experimental design. Nine months old male Lewis rats were exposed to rotenone (1mg/kg/day) or DMSO:PEG as vehicle control (DMSO) delivered
subcutaneously through Alzet minipumps. One week after minipums implantation all rats were familiarized to treadmill running for 3 weeks (3 times per week,
10–30 minutes per day, 0.3km.h−1). Rats were then divided in two groups: sedentary and physical exercise. Exercised rats run on treadmill 5 days/week, 40min., at
50% of their maximal capacity, during 6 weeks. Sedentary groups (DMSO, n = 5; and Rotenone, n = 5) did not practiced physical exercise, they were only exposed to
the switched off treadmill. Groups DMSO EXE (n = 5) and ROT EXE (n = 5), receive DMSO or rotenone, respectively, followed by physical training.
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0.2mMprotease inhibitor (PMSF). Total protein concentrationwas
accessed through Bradford method. Samples were prepared in
duplicates using 100 mM Tris (pH 8.1), 3 mM acetyl-CoA, 1 mM
5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) and 5 mM oxaloacetate.
Reaction was quantified by spectrophotometry measuring the
indirect formation of the CoA-SH. Citrate synthase catalyzes a
reaction that ends up with the formation of CoA conjugated
with a thiol group (CoA-SH), which reacts with DTNB o form
TNB, a yellow product, measured at 412 nm.

Proteasome activity

Proteasome activity was determined according to the previously
describedmethod (Silva et al., 2012). Substantia nigra was lysed in
RIPA buffer (400 µl of PBS, pH 7.4, containing 1% NP40, 0.5%
sodium deoxycholate, 1% SDS, 1 mM EDTA, 1 mM EGTA). Thirty
micrograms of total protein was incubated with 125 µM of the
fluorogenic substrate s-LLVY-MCA (Calbiochem) in 20mM Tris/HCl
buffer, pH 7.5, at 37ºC. Fluorescence emission was recorded at
440 nm (excitation at 365 nm) for 45 minutes in Gemini XPS
Fluorescence Microplate Reader.

Levels of hydrogen peroxide

To evaluate the intracellular H2O2 content, a modification of
Zhou, Diwu, Panchuk-Voloshina, and Haugland (1997) method
was employed. Briefly, 30 µg of total protein extract of brain
tissue was incubated with 50 µM of the fluorogenic reagent
Amplex red (Molecular probes) and 1.0 U/mL of Horseradish
peroxidase diluted in 0.1M PBS, pH 7.0, at 37º C. Fluorescence
emission was recorded at 587 nm (excitation at 563 nm) for
10 minutes in Gemini XPS Fluorescence Microplate Reader.
Hydrogen peroxide levels were shown as percentage of control.

Antioxidant enzymes assays

Glutathione peroxidase (GPx) activity was analysed by a colori-
metric assay (Sigma cat. # CGP1), which is based on the reduction
of tert-butyl hydroperoxide by glutathione (GSH), in a reaction
catalysed by GPx that generates the oxidized form of glutathione
(GSSG). Then, NADPH reduces GSSG in a reaction catalysed by
glutathione reductase (GR). The course of these coupled reactions
were followed by the decay in NADPH absorbance at 340 nm.
Eighty micrograms of total SN protein extracts were loaded in a
96-well microplate containing GPx assay buffer, pH 7.0, NADPH
assay reagent, GPx and tert-butyl hydroperoxide.

GR activity was determined by a colorimetric (Sigma cat.
#GRSA) that is based on the reduction of GSSG by NADPH
coupled with the reduction of DTNB by GSH, generating the
product TNB, which is followed by visible absorbance. Eighty
micrograms of protein extracts were incubated with 2 mM
GSSG (100 μl), assay buffer (20 μl), 3 mM DTNB (50 μl) and
2 mM NADPH (10 μl) in a 96-well plate. The reduction GSSG by
NADPH catalysed by GRwas verified by spectrometry analysis for
five minutes, the first reaction was measured by the decrease of
NADPH absorbance at 340 nm for NADPH and the second reac-
tion measured by the increase of TNB absorbance at 412 nm for

TNB. Superoxide dismutase (SOD) activity was determined by a
colorimetric assay (Cayman, cat # 706,002) that utilizes a tetra-
zolium salt for detection of superoxide radicals that can be
generated by leakage of electrons in the mitochondrial respira-
tory chain. Superoxide radicals can reduce a tetrazolium salt into
formazan products that exhibited absorbance in the visible spec-
trum. Therefore, all three isoforms of SOD (Cu/Zn, Mn, and
FeSOD) can inhibit the reaction of superoxide radicals with this
tetrazolium salt. Ten micrograms of protein extracts (1µg/µl)
were added to 200µl of the radical detector per well. Reaction
started with 20 μl of diluted xanthine oxidase to all the wells.
Plate was protected from light and incubated in a shaker for
30 minutes at room temperature. Absorbance was measured at
440nm.

Western blot

Substantia nigra samples were fractionated by SDS-PAGE (30 µg
of protein/lane) using a 12% tris-HCl gel at 100 V for 1h. Proteins
were transferred to nitrocellulose membrane in transfer buffer
(25 mM Tris, 190 mM glycine, 10% methanol) for 1 hour at 100 V
at 4ºC. Membranes were blocked for 1 hour at room temperature
in Tris-Buffered saline containing Tween 20 (TBS-T; 50 mM Tris,
pH 8.0, 133mMNaCl, 0,2% Tween 20) with 5%non-fat drymilk or
5% BSA (Sigma).

Membranes were incubated with primary antibodies against
TH (h-196, sc-14,007, Santa Cruz, 1/500), alpha-synuclein (C-20-R,
sc-7011-R, Santa Cruz, 1/500), Tom-20 (sc-11,415, Santa Cruz, 1/
500), PINK1 (ab23707, Abcam, 1/1000), TrkB (H-181, sc-8316, Santa
Cruz, 1/1000); SLP1 (sc-136,480, Santa Cruz, 1/2000); CRMP-2
(C2993, Sigma, 1/7000); Rab-27b (R-4655, Sigma, 1/1000); LC3II
(3868, Cell Signalling Technology, 1:1000) or Beclin-1 (3738, Cell
Signalling Technology, 1:1000); in 3% non-fat dry milk in TBS-T,
overnight at 4°C, followed by horseradish peroxidase-conjugated
anti-mouse (1/6000, Amersham) or anti-rabbit (1/10,000,
Amersham). Secondary antibodies incubations were performed
at room temperature for 1 hour.

Development was done after 5-minute incubation with
enhanced chemiluminescence reagent (Millipore) and exposure
to chemiluminescence sensitive films (Hyperfilm ECL, Amersham
Biosciences). After development, blots were incubated with anti-
beta-actin antibody (sc-47,778, Santa Cruz, 1/1000) during 1h at
room temperature, followed by horseradish peroxidase conju-
gated anti-mouse (1/6000, Amersham), incubated for 1 hour also
at room temperature andwere developed as previously described.
Films were quantified using Image J software (NIH). Normalization
was done by dividing the values corresponding to the bands
relative to proteins of interest by beta-actin values.

Statistical analysis

Results were analysed either by Student’s T-test (citrate synthase
activity), repeated measures ANOVA (body mass), or two-way
ANOVA followed by Bonferroni post-hoc test accessed through
GraphPad Prism (GraphPad Software Inc., version 5.00, CA). Data
are expressed as percent of control (DMSO) ± standard deviation
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(SD), except when indicated. A p-value ≤ 0.05 was considered to
indicate statistically significant differences.

Results

Effects of physical activity on body weight, physical
capacity and activity of citrate synthase

Body mass decreased about 10% at the end of experimental
protocol as compared with the initial situation for rats from
Sedentary Rotenone and DMSO Exercise groups (Figure 2(a)),
exercised rats that received rotenone lost 15% of the initial body
mass (Figure 2(a)). Physical activity did not interfere with body
weight since there was no significant change in this parameter
after the beginning of training (Figure 2(a), 4th week). The lower
body mass of control rats at the beginning of the experimental
protocol is not statistically different from the other groups.
Improvement in physical activity was confirmed by the test at
the end of training confirming that exercised animals run during
50% more time than sedentary rats (Figure 2(b)), rotenone expo-
sure did not affected rats performance during training
(Figure 2(b)).

Effectiveness of aerobic physical activity was confirmed in
trained animals since they presented increased activity of
citrate synthase in gastrocnemius and soleus muscles, indicat-
ing oxidative adaption to exercise training (Figure 2(c)).

Moderate physical training attenuates α-synuclein levels
generated by rotenone exposure

Rotenone increased the levels of α-synuclein by 50% (Figure 3
(a)), as exercise alone also did. However, moderate treadmill
running prevented the increase of α-synuclein levels in substan-
tia nigra after rotenone exposure (Figure 3(a)).

Tyrosine hydroxylase levels did not change after rotenone
exposure or physical training (Figure 3(b)), however there was an
increase in TH levels in rotenone-exposed rats after treadmill
(Figure 3(b)).

Moderate physical training increased autophagy during
neurodegeneration and decreased proteasome activity

Autophagy was measured comparing the levels of beclin-1
and LC3II. It was demonstrated that rotenone promoted a

decrease in autophagy illustrated by the absence of LC3II
degradation (LC3II accumulation, 90%) even in the scenario
where beclin-1, which initiates autophagy, is 30% upregulated
(Figure 4(a), 4(b)). Exercise training stimulated an increase in
beclin-1 levels and degradation of LC3II in substantia nigra
during neurodegeneration (Figure 4(a), 4(b)), demonstrating
an increase in autophagy promoted by exercise training only
in rats exposed to rotenone.

Proteasome chymotrypsin-like activity was not changed in
early neurodegeneration while exercise induced loss of pro-
teasomal activity. In animals treated with rotenone and sub-
mitted to exercise, the loss of proteasomal activity was
significantly higher (Figure 4(c)).

Moderate physical training during early
neurodegeneration prevents impairment of mitophagy

TOM-20, a subunit of the mitochondrial outer membrane
translocase, levels significantly increased 40% in substantia
nigra of the aged Lewis rats exposed to rotenone, indicating

Figure 3. Alpha synuclein (A) and tyrosine hydroxylase (TH) (B) levels in sub-
stantia nigra of 11 months old Lewis rats exposed to rotenone (ROT, 1mg/kg/
day) or DMSO (control) and submitted to 6 weeks of treadmill running at
moderate intensity (EXE) or left sedentary. Data are presented as mean±S.D.
Significance level was considered when p < 0.05 according to two-way ANOVA
followed by Bonferroni ad-hoc test. n = 5. * vs. control; # vs. ROT and EXE.

Figure 2. Body weight variation (A) and physical conditioning (B) of 11 months old Lewis rats exposed to rotenone (ROT, 1mg/kg/day) or DMSO (control) and submitted to
6 weeks of treadmill running at moderate intensity (EXE) or left sedentary (SED). Activity of citrate synthase (C) in soleus and gastrocnemius muscles of sedentary or exercised
rats. Data are presented as mean±S.D (S.D. was omitted from body weight line graph). Significance level was considered p < 0.05 according to repeated measures (A), two-way
ANOVA followed by Bonferroni ad-hoc test (B) and Student’s T-test (C). n = 5. * vs. week 0 (A), initial (B) or control (bar graphs); # vs. ROT.
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accumulation of mitochondria, whereas physical training dur-
ing early neurodegeneration prevented that increase (Figure 5
(a)). PINK1 levels showed a tendency of decrease in substantia
nigra of aged rats exposed to rotenone (p = 0.08), which was
not present in exercised rats (Figure 5(b)), illustrating a possi-
ble improvement in mitophagy after physical activity.

Moderate physical training decreases hydrogen peroxide
during neurodegeneration

Hydrogen peroxide levels increased 16% after low rotenone
exposure; however, moderate physical exercise practiced dur-
ing early neurodegeneration prevented increased H2O2 pro-
duction (Figure 6(a)).

Activity of the antioxidant enzyme GPx in substantia nigra was
evaluated, as this enzyme is one of the most reactive enzymes for
H2O2 removal. The other antioxidant enzyme evaluated was SOD

responsible for superoxide decomposition andH2O2 production. It
was observed no change either in SOD activity (Figure 6(b)) or in
GPx activity (Figure 6(c)). There was a discrete loss in GR activity in
animals treated with decreased after rotenone or submitted to
exercise when compared to Control animals. However, GR activity
was recovered when rotenone-treated animals were submitted to
exercise (Figure 6(d)).

Figure 4. Levels of Beclin-1 (A) and LC3II (B) and proteasome activity (C) in substantia nigra of 11 months old Lewis rats exposed to rotenone (ROT, 1mg/kg/day) or
DMSO (control) and submitted to 6 weeks of treadmill running at moderate intensity (EXE) or left sedentary. Data are presented as mean±S.D. Significance level was
considered when p < 0.05 according to two-way ANOVA followed by Bonferroni ad-hoc test. n = 5. * vs. control; # vs. ROT and EXE.

Figure 5. TOM-20 (A) and PINK1 (B) levels in substantia nigra of 11 months old
Lewis rats exposed to rotenone (ROT, 1mg/kg/day) or DMSO (control) and
submitted to 6 weeks of treadmill running at moderate intensity (EXE) or left
sedentary. Data are presented as mean±S.D. Significance level was considered
when p < 0.05 according to two-way ANOVA followed by Bonferroni ad-hoc
test. n = 5. * vs. control; # vs. ROT; tp = 0.08 vs. control.

Figure 6. Hydrogen peroxide levels (A), SOD inhibition (B), GPx (C) and GR (D)
activity in substantia nigra of 11 months old Lewis rats exposed to rotenone (ROT,
1mg/kg/day) or DMSO (control) and submitted to 6 weeks of treadmill running at
moderate intensity (EXE) or left sedentary. Data are presented as mean±S.D.
Significance level was considered when p < 0.05 according to two-way ANOVA
followed by Bonferroni ad-hoc test. n = 5. * vs. control; # vs. ROT and EXE.
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Moderate physical exercise does not interfere with trkb
levels and proteins involved in its anterograde traffic in
substantia nigra during neurodegeneration

Rotenone decreased TrkB receptor levels by 45%, whereas
moderate physical training did not change this decrease dur-
ing early neurodegeneration (Figure 7(a)).

Specific protein complex of TrkB anterograde trafficking
(CRMP-2, Rab27B and SLP-1) increased before protein aggregation
(42% for CRMP-2, 118% for Rab27B and 96% for SLP-1), in the
same way physical activity increased these proteins levels inde-
pendently of rotenone exposure (Figure 7(b), 7(c) and 7(d)).

Discussion

It was demonstrated, for the first time, that moderate treadmill
running, practiced during early neurodegeneration, prevented the
increase of α-synuclein and promoted the increase of TH levels in
substantia nigra of aged rats. Physical exercise also stimulated
autophagy, namely mitophagy, but decrease proteasome activity.
Physical activity also prevented H2O2 increase during early neuro-
degeneration, although the mechanism involved remains to be
elucidated. One possibility might be increased mitogenesis upon
increased physical activity. TrkB levels and anterograde trafficking

seems not to be influenced by moderate treadmill running.
Overall results indicate that moderate treadmill running can
delay neurodegeneration of substantia nigra,

Training protocol did not interfere with body mass, while
trained groups increased aerobic capacity and citrate synthase
activity, as expected, even for old animals (Sanchez, Bastien, &
Monod, 1983). Also, the physical capacity was decreased in seden-
tary groups around 40–50% comparedwith initial condition. It was
expected that older rats present lower performance at the max-
imal capacity test, at the end of the protocol rats were 10 weeks
older (they were 10 months old), thus it could be the reason for
the decline in strength, since studies in young rats already showed
that physical inactivity reduces the performance (25–35%) after
13 weeks (Ceroni et al., 2009; Jordao, Ladd, Coppi, Chopard, &
Michelini, 2011), while in old rats the exercise capacity decreased
significantly with age and sedentarism.

Rotenone exposure increased α-synuclein levels, which was
not supposed to occur with only 1 month of 1mg/kg/day of
rotenone treatment (Almeida et al., 2016). However, neurode-
generation was not yet installed since TH levels remained
unchanged. Although α-synuclein was up-regulated by rote-
none, TH-positive neurons were preserved demonstrating that
the observed results occur prior neuron death, in early neuro-
degeneration. Interestingly, TH-positive neurons increase after
physical activity in rotenone trained rats.

Alpha synuclein is a protein involved in synaptic transmission,
the increased expression of this protein after exercise trainingmay
be related to the synaptic plasticity, while the increased expression
of α-synuclein after rotenone may be associated to decrease of its
degradation and/or aggregation as occur in early neurodegenera-
tion. This hypothesis is strengthened by the evidence that exercise
training prevented the increase of α-synuclein promoted by rote-
none, which indicate that the increase of α-synuclein in the two
groups is driven by different and antagonistic pathways. The
mechanisms underling increase of α-synuclein in both situations
remains to be further evaluated. This is evidence that physical
activity applied during early neurodegeneration has a possible
protective response, as occurs in other PD animal models (Shin,
Jeong, An, Lee, & Sung, 2016).

Physical exercise also interferes with autophagy during early
neurodegeneration. It was demonstrated a decrease in autop-
hagy flux by the accumulation o LC3II, which was prevented by
mild treadmill running during neurodegeneration. The increase
in autophagy induction, promoted by increase in beclin-1, as well
as degradation of LC3II (Klionsky et al., 2016), may correlate with
the observed decrease of α-synuclein in the substantia nigra of
aged rats exposed to rotenone and moderate running.

In the context of autophagy, mitophagy was also evaluated
by the expression of PINK1 and TOM-20. The increase in TOM-20
during early neurodegeneration is associated with decrease of
PINK1 and possibly accumulation of mitochondria (Nardin,
Schrepfer, & Ziviani, 2016) restoration of their levels by exercise
might ameliorate mitochondria dynamics.

Mitophagy dysfunction during early neurodegeneration is
associated with increased oxidative stress, since mitochondria
are the primary source of reactive oxygen species (Palikaras &
Tavernarakis, 2012). In the present study, an increased produc-
tion of H2O2 was observed, which correlated with mitochon-
dria accumulation. Moderate physical activity prevented the

Figure 7. TrkB (A), CRMP-2 (B), Rab27b (C) and SLP-1 (D) levels in substantia
nigra of 11 months old Lewis rats exposed to rotenone (ROT, 1mg/kg/day) or
DMSO (control) and submitted to 6 weeks of treadmill running at moderate
intensity (EXE) or left sedentary. Data are presented as mean±S.D. Significance
level was considered when p < 0.05 according to two-way ANOVA followed by
Bonferroni ad-hoc test. n = 5. * vs. control.
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increase of H2O2 and did not change the activity of antiox-
idant enzymes. Decrease of GR activity may be result of
unchanged of GSH activity, decreasing the substrate GSSH
for GR. This strengths the hypothesis that H2O2 was mainly
produced by dysfunctional mitochondria, which was re-estab-
lished by moderate physical activity.

The present data corroborate previous studies that associate
decrease in TrkB receptors during neurodegeneration, which is
associated with the possible feedback effect of increase in motor
proteins of these receptors. However, results presented herein
demonstrated that proteins associated to BDNF system, such as
TrkB receptor and proteins related to anterograde trafficking of
TrkB receptor, seem not to be involvedwith the cellular protection
of moderate physical activity during early neurodegeneration, as
well established for late PD animal models where neuron loss is
present (Real et al., 2013; Wu et al., 2011b).
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